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We extend the recently proposed state-space restriction (SSR) technique for quantum spin dynamics sim-
ulations [Kuprov et al., ]. Magn. Reson. 189 (2007) 241-250] to include on-the-fly detection and elimina-
tion of unpopulated dimensions from the system density matrix. Further improvements in spin dynamics
simulation speed, frequently by several orders of magnitude, are demonstrated. The proposed zero track
elimination (ZTE) procedure is computationally inexpensive, reversible, numerically stable and easy to
add to any existing simulation code. We demonstrate that it belongs to the same family of Krylov sub-
space techniques as the well-known Lanczos basis pruning procedure. The combined SSR + ZTE algorithm
is recommended for simulations of NMR, EPR and Spin Chemistry experiments on systems containing
between 10 and 10* coupled spins.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The current state of magnetic resonance theory can be de-
scribed as comfortable—most pulse sequences and spin dynamics
experiments in both solid and liquid state can be simulated with
high accuracy [1-8], at least numerically [1,3,6-8] and in many
cases analytically [9,10]. The only hard limit is the available com-
puting power—while many approximations succeed in reducing
computation time by large factors [8,11-13], and many special
cases can be dealt with efficiently [14-16], the asymptotic scaling
is in most cases exponential [11] and accurate simulations of arbi-
trarily coupled systems with more than ~10 spins are difficult to
perform.

We recently proposed a solution to the exponential scaling
problem. Our adaptive state-space restriction (SSR) algorithm
[17] analyzes the spin interaction graph and generates a restricted
state space, keeping only the states that are likely to contribute to
system evolution. Dramatic reduction in simulation times was
achieved and polynomial scaling demonstrated, but we did observe
at the time that the reduced operators and state vectors were still
very sparse, suggesting that further reduction is possible. In this
communication we achieve this reduction with the aid of further
algorithmic steps, based on Krylov subspace techniques [18,19].
The operator matrices and state vectors resulting from the proce-
dures described below are dense (and tiny), even for systems with
hundreds of spins, meaning that the basis pruning is complete and
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a computationally efficient Minimal Truncation Scheme [13,20] for
spin dynamics simulations has finally been found.

2. Trajectory level pruning and Krylov subspaces

The SSR procedure [17] constructs the reduced basis by analyz-
ing the spin interaction topology and performing what may be
termed spin system level pruning—it selects the states that can
potentially contribute to spin system evolution under a variety of
pulse sequences. In practical calculations, however, there is also
a considerable scope for optimizations that are specific to the
experiment being simulated and to the actual trajectory that the
spin system describes. Therefore, a deeper trajectory level pruning
can be performed for each specific simulation instance to further
select the states that do actually contribute to the spin system
evolution.

The trajectory level pruning idea is illustrated schematically in
Fig. 1—even in a restricted state space, the system trajectory at
any given period is usually confined to some small subspace
(which happens to be Krylov subspace [18,19], as we will see from
the algebraic analysis below). On a practical level, this may be in-
ferred from direct inspection of magnetic resonance simulation
trajectories and invariant subspaces corresponding to different
irreducible representations of system symmetry groups [21-23].
Similarly, product operator treatments of even very sophisticated
pulse sequences only ever require small operator basis sets [24].
The Krylov subspaces in Fig. 1 are switched (shown as intersections
between planes) or modified by external events, such as pulses or
decoupling, and a sequence of these subspaces contains the system
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Krylov subspaces

Fig. 1. Schematic illustration of the trajectory level state-space pruning. The
analysis of practical simulations as well as theoretical arguments given in the main
text suggest that the spin system trajectory is usually confined to relatively small
subspaces (sketched above as a 2D planes) of the full state space. Switches between
the Liouvillian operators caused by the pulse sequence events move the trajectory
between these subspaces, but they do stay small. A computationally efficient
algorithm for mapping these subspaces (which are shown below to be Krylov
subspaces) would reduce the dimension of the matrices involved in the simulation,
leading to an improvement in speed and scaling.

trajectory. If a computationally efficient way can be found to map
out those subspaces, the size of the simulation is likely to be
reduced.

While the spin system level pruning and the resulting polyno-
mially scaling simulation algorithm are a recent development
[10], the trajectory level pruning (which, on its own, scales expo-
nentially'), has a long history, starting with the Lanczos/Arnoldi pro-
cedure proposed by Freed et al. [13,20] and the general Krylov
subspace techniques used in molecular spectroscopy, electrical cir-
cuit analysis and control systems theory [18,19]. We will now out-
line the connection between the algebraic operations performed in
a spin dynamics simulation and the general theory of Krylov
subspaces.

In a typical time-domain simulation (and the sophisticated
modern pulse sequences do increasingly require time-domain sim-
ulations), a system trajectory under a given Liouvillian L is gener-
ated and a scalar product of that trajectory with the observable
state is computed to obtain the evolution curve for the observable
we are interested in. Formally speaking, the objective is to generate
the propagator group orbit G(po) of the initial state vector po [17]

G(po) = {e Py, t € [0,00)} (1)

This orbit is known in magnetic resonance under the name of the
‘system trajectory’. In a discrete simulation with a time step At
the orbit will be discretized as well:

Glpo) = 1o, Ppo.Ppu..j; P = et @)

The pruning problem consists in finding (exactly or approximately)
the minimal basis set that contains the entire trajectory. This prob-
lem is known as Krylov subspace construction [18,19] and the cor-
responding space

K, = span{po, Ppo, P2 po, ..., P po} (3)

1 All pruning methods based on matrix factorizations and model order reduction
share one critical weakness—the exact Liouvillian has to be stored and manipulated in
order to be reduced. Liouvillian dimensions scale exponentially with the spin system
size and with over 15 spins the reduction procedure inevitably runs out of storage
space, even with sparse matrices.
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Fig. 2. Schematic flowchart of trajectory level pruning. The state vectors
{p1,p2.- . ..pn} comprising the system trajectory under a given Liouvillian L are, in
general, linearly dependent and belong to a subspace of the full state space. The
minimal basis {¢1,,. . ., 0%} spanning this trajectory may be generated using one of
the standard orthogonalization techniques: Gram-Schmidt (G-S) [28], singular
value decomposition (SVD) [29] and Lanczos (Lz) [13,20]. It is known [13,20] that
the dimension of this minimal basis is significantly smaller than the full state space
dimension.

is known as the n-th Krylov subspace generated by the propagator P
and the initial state vector? po. Because many spin states are not pop-
ulated in typical simulations [17], the dimension of the Krylov sub-
space is frequently much smaller than the dimension of the full
state space, and a suitably orthogonalized sequence of state vectors
in Eq. (3) provides a much smaller basis set while keeping the simula-
tion essentially exact. This process is schematically illustrated in
Fig. 2—the system trajectory {p,} generated by repeated application
of the temporal propagation operator to the initial state vector is
orthogonalized using one of the standard techniques and the resulting
orthonormal set {G,} is used as a new basis set. The minimal basis
construction is considered complete when the next trajectory vector
is contained entirely (or within a user-specified tolerance on the
residual norm) in the Krylov subspace generated at the previous step.

The pruning flowchart as given in Fig. 2 is only practical for the
smallest spin systems. With more than 15 spins, computing the
matrix exponential is not an option due to astronomical CPU and
memory requirements [25,26]. Still, it is useful for the formal anal-
ysis presented below. Because the Taylor series for P = e~it con-
verges for any finite value of t, the Krylov subspace in Eq. (3) is
identical to the following Krylov subspace:

Kn = Span{p07i‘p07i‘2p0>'"7Z‘mp0} (4)

(where m can be much larger than n) because those powers of the
Liouvillian do appear in the Taylor expansion of the exponential.
The Krylov subspace in the Eq. (4), however, is much simpler to
compute—it only needs matrix-vector multiplication and an orthog-
onalization pass (possibly with elimination of linear dependence),
resulting in the required minimal basis set. This is known as Lanc-
zos pruning (since Lanczos procedure provides a convenient orthog-
onalization and Liouvillian tridiagonalization technique), which
Moro and Freed originally formulated in a purely mathematical iter-
ative fashion [13]. It may be shown to be related to the time-depen-
dent perturbation theory, where different powers of the Liouvillian
represent perturbative corrections. An important difference from
the implementations existing in computer science is that the
starting vector is not generated randomly, but is actually the phys-

2 Density matrices will mostly be referred to as ‘vectors’ henceforth, because of the
way such calculations are usually implemented—the density matrix written in a
suitable basis is stretched into a vector and multiplied by the propagator matrix.
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ically correct starting vector for the spin dynamics simulation in
question.

Other trajectory level pruning algorithms differ in the way
that the orthogonalization is carried out in Eq. (4)—Gram-
Schmidt or singular value decomposition (SVD) techniques may
be used instead. The Lanczos type methods are relatively fast
because the orthogonalization is performed within the algorithm
step by projecting out the subspace obtained in the previous
iterations [13,20]

Bilk) = (1 *ZU O)LIkU (5)

(Br is the normalization multiplier), but have well documented
numerical stability issues in finite precision arithmetic with dimen-
sions in excess of several hundred [13,20,27]. The root cause of the
numerical stability problems appears to be twofold. First, Eq. (4)
and, after iteration loop unrolling, Eq. (5) contain the Liouvillian
raised to power 11, meaning that the difference between the smallest

and the largest [" eigenvalue increases exponentially during the
iterations. Assuming (very conservatively) a factor-of-two spread

between the smallest and the biggest eigenvalues of L (e.g. & and
2w in a two-spin system), the difference would scale as 2" with
the number of iterations, meaning that the double-precision ma-
chine arithmetic will be overwhelmed around n =64 and severe
numerical rounding errors will creep in. Second, the Gram-Schmidt
orthogonalization step implicit in Eq. (4) and explicitly applied to
Eq. (5) is known to be numerically unstable and quite expensive
for large values of n [28]. In other words, Lanczos pruning works
well for small values of n (in practice up to about 500). Numerically
stable orthogonalization techniques (based on SVD and QR
factorization) that can deal with bigger state spaces [29] are compu-
tationally expensive and difficult to parallelize. The Liouvillian can,
in principle, be preconditioned to have unit eigenvalues, but in
practice performing such a precise preconditioning is equivalent
to diagonalization [30]. The exponential propagator in the original
Krylov subspace in Eq. (3) is naturally free of this problem, because
the eigenvalues have a modulus of one, but computing the matrix
exponential is equivalent, from the asymptotic scaling point of
view, to diagonalization [25,26].

3. Zero track elimination

As we saw above, mapping Krylov subspaces for either the
Liouvillian or the propagator is computationally expensive (at
least quadratic and sometimes cubic scaling with the matrix size)
and may generate numerical accuracy problems. We can, how-
ever, try to reformulate the original question—instead of looking
for the vectors that do appear in the Krylov subspace and then
projecting into that subspace, we can look for the vectors that
do not appear there and project them out. It turns out that for
spin dynamics simulations this procedure yields an efficient and
numerically stable technique that we called Zero Track Elimina-
tion (ZTE).

It is well known that the typical initial state vectors in magnetic
resonance simulations (SZ,S+etc ) are very sparse. This sparsity is
entirely separate from the sparsity of the Liouvillian—the latter re-
fers to the general properties and connectivities of the spin system,
whereas the former is a property of the actual pulse sequence or
experiment through which the system evolves. It is also common
wisdom that in a {po, Ppo,P2po,...} sequence many elements of
the state vector p, will, in fact, stay zero throughout the calcula-
tion, exactly or approximately. It seems likely that the dimensions
corresponding to those elements may be pruned out. In fact, the
following theorem holds:

Theorem 1 (Zero Track Theorem). If a state-space vector |i) does
not appear in the system density matrix anywhere within the first
Larmor time step At of the evolution under a constant Liouvillian L, it
will never appear in any of the subsequent steps.

(ile"™|po) = 0,t € [0,At] = (ile"™[po) =0, t € [0,00) (6)
Proof. because the Taylor expansion of a continuous function is
unique in any given interval, the following series, in order to be
zero everywhere within t € [0,At], must have zero coefficients:

> <i|i|po>< i )
+ (13| po)

iE|p

(e~ po) 7

= (e
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meaning that

(iE|po) = (ilL|po) = (ilL%]po) = -~ =0 8)

or, in other words, that [i) is orthogonal to the Krylov subspace gen-
erated by L and |po). The fact that the coefficients in (8) are zero
means that the series in Eq. (7) will stay zero for all values of t. O

As may be seen from the proof, the ZTE pruning amounts to
detecting the states that do not appear in the Krylov subspace gen-
erated by the Liouvillian and the initial state and pruning them out.
This strategy is, in effect, the reverse of that employed by Lanczos
pruning procedure, where the Krylov subspace is first mapped in
its entirety and then projected into. The problem of actually com-
puting the first time propagation step (or a number of steps, to
avoid accidental zeros) can be circumvented by avoiding the expli-
cit calculation of matrix exponentials. A computationally efficient
procedure (itself based on Krylov subspaces) exists [26,31] for
computing e~ilt| po) directly from L and |po), and the program code
listed in the Supplementary Information makes use of it.

While Theorem 1 does provide a good start, the number of sca-
lar products (ile=it|po) that would stay identically zero is usually
quite small. A much larger class will stay approximately zero and
we need a robust pruning criterion for those, as well as an error
estimate. We would ideally like to compute some small number
of At steps and prune out the dimensions corresponding to the
state vectors, whose magnitude had remained below a certain
threshold. We will now demonstrate that this procedure would
amount to ignoring the contributions from high-order vectors of
the Krylov sequence generated by L and |po).

Theorem 2 (Thin Track Theorem). If the absolute value of a scalar
product (ile | po) stays smaller than a fixed constant number ¢ < 1
throughout the first Larmor time step of the simulation, removing (i
from the basis set is equivalent to restricting the simulation to a Krylov
subspace generated by L and |po), ignoring the contributions to that
subspace from high values of n in i"\p(]).

Proof. we observe that for a sub-Larmor time step At, the Taylor
series for the scalar product (ije-i|p,) converges monotonically
(that is, the absolute value of each subsequent term is smaller than
that of the preceding one). Since the absolute value of the entire
series is bounded from above by ¢,

> O ooy | < &

n

(ile | po) = 9)

the high-order terms in this expansion are necessarily much smaller
than ¢ for all values of t. That is, to within some small tolerance, the
contribution to the propagator from L"|p,) does not contain any |i),
which is therefore absent from the Krylov subspace of interest.
Excluding this state (and others that fall below the & threshold)
from the basis set would therefore amount to restricting the



48 I. Kuprov/Journal of Magnetic Resonance 195 (2008) 45-51
Po Pr Py Ps PP Prs Pz Prs P ¢ Ly=2"LZ
FCNICNCNICNICNCNICNIC NN N Y\ F.-.----- eo e 3
first k steps of zero track zero track new operators and
system trajectory mask elimination state vectors

Fig. 3. Zero Track Elimination algorithm schematic. The initial density matrix po (shown as a vector with blue dots denoting non-zeros) is propagated forward in time for k
Larmor steps using Krylov technique [26,31] to avoid the computation of Liouvillian exponential. Zero tracks in the density matrix are detected and the zero mask {, (red dots
denote zero tracks) is generated. Eq. (11) is then applied: the rows and columns that would operate on zero tracks are erased from the Liouvillian and the elements
corresponding to zero tracks are erased from the density matrix. A return to the full state space may be performed at any time in the subsequent simulation by re-inserting
zeroes into their original positions within the density matrix and returning to the original Liouvillian. (For interpretation of the references in color in this figure legend, the

reader is referred to the web version of this article.)

simulation to the Krylov subspace in Eq. (4) and ignoring the contri-
butions from the high-order terms. O

Because ZTE restricts the system to low-order vectors of the
Krylov subspace, it accomplishes the same goal as Lanczos pruning.
It does, however, turn out to be faster, because scalar products in
Eq. (9) can be replaced by a simple zero check within the density
matrix.? The practical implementation of ZTE technique (illustrated
schematically in Fig. 3, the Matlab source code is listed in the Sup-
plementary Information) contains the following stages:

1. Generation of the fist k trajectory steps of approximately Lar-
mor size using Krylov propagation [26,31] to avoid computing
the full Liouvillian exponential. The procedure scales as vec-
tor-matrix multiplication, that is, between O(N?) and O(N),
depending on sparsity, with the dimension of the Liouvillian
matrix.

2. Detection of zero tracks in the resulting trajectory, which pro-
ceeds by a simple tolerance check, and generation of the zero
track mask ¢.

1if Rl <e
k

0 otherwise

i=

(10)

3. Construction of the shrinking matrix Z, which is a unit matrix
with columns flagged in the zero track mask { taken out. It is
easy to see that the following transformation would then
accomplish the shrinkage

iZTE = ZTlAfZ pO‘ZTE = ZTpO (1 ])

Eq. (11) is a formality—in practical calculations the computer is
simply instructed to throw a number of rows and columns away

from L and |po).

. Calculation of the rest of the trajectory in the resulting reduced
state space using standard spin dynamics simulation tech-
niques. The reduced operator matrices and state vectors consti-
tute a low-dimensional representation of the system dynamics,
meaning that all the standard simulation techniques (exponen-

3 The reason for this is highly non-trivial and probably specific to spin dynamics—
the basis set is usually generated with a product operator procedure, starting from
Pauli matrices. Because the Liouvillian is generated in the same way, it takes a
particularly sparse and simple form.

tial propagation, diagonalization, scalar products etc.) work as
before, making the procedure easy to add to any existing simu-
lation code.

5. Optionally, a return to the full state space by re-inserting zeros
into their original positions in the state vector and returning to
the original Liouvillian. This may be necessary if the next pulse
sequence segment has a different Liouvillian (the detailed treat-
ment of time-dependent cases is given in a separate section
below).

The procedure described above can be made more general (but
more computationally expensive) if the explicit zero check is re-
placed by scalar product check prescribed by Theorems 1 and 2.
Interestingly, because the index of the pruned density matrix
dimensions can be kept, they can be re-introduced as zeros at
any time, meaning that the procedure is reversible. The speed
advantage over Lanczos and SVD techniques comes from the lack
of actual matrix-vector multiplication in stages 2 and 3. All opera-
tions amount to array element removal.

4. ZTE with time-dependent Liouvillians

The discussion has so far referred implicitly to time-indepen-
dent Liouvillians. We will now generalize the ZTE formalism and
demonstrate that it remains valid and computationally efficient
in the two common time-dependent cases: for piecewise-constant
and continuously varying Liouvillians.

4.1. Piecewise-constant Liouvillians

Many pulse sequences in NMR and EPR can be approximated as
a series of hard pulses and delays with different (due to decou-
pling, gradients etc.) static Liouvillians, meaning that spin evolu-
tion under a piecewise-constant Liouvillian has to be considered.
A switch between static Liouvillians triggers a jump to a different
Krylov subspace in Eq. (4), requiring a brief return to the full state
space and a repetition of the ZTE procedure with the new Liouvil-
lian. This move to a different Krylov subspace is shown schemati-
cally in Fig. 1 as a subspace jump by the system trajectory. The
implementation schematic (Matlab source code is included in the
Supplementary Information) is given in Fig. 4. At the start of each
Liouvillian segment, ZTE pruning is applied and an index of the
zero tracks (a list of their original positions in the state vector) is
kept. The simulation is carried out in the reduced state space for
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Fig. 4. ZTE algorithm schematic for a piecewise-continuous Liouvillian. For each
Liouvillian segment, ZTE pruning is applied, the temporal propagation is carried out
in the reduced state space and then a return to the full state space is performed. For
further details, see text.

the prescribed length of time and a return to the full state space is
performed by re-inserting the zeros into their original positions.
The resulting full state-space vector is used as a starting state for
the next Liouvillian segment.

4.2. Continuously varying Liouvillians

Any continuously time-dependent Liouvillian operator admits
the following expansion

L(t) =32 OF;, (12)

where ft) are linearly independent continuous functions of time,
serving as expansion coefficients for L(t) in a static operator basis
{F} In the simplest case of scalar time dependence of the form
L(t) = f(t)F (e.g. a Gaussian pulse, where only the amplitude is var-
ied) both Theorems 1 and 2 are still valid in full generality because
the envelope function f(t) only re-scales the time step
exp(—iL(t)At) = exp(—iFf(t)At) = exp(—iFAt') At =f(t)At

(13)

which does not affect zero tracks—they stay zero because no extra
coherence transfer paths are introduced by the scalar modulation.
Thus, the ZTE pruning only needs to be performed once at the start

A B
n=1024 n=1024
(exact) (exact)

n=80 t=0.16 s n=80
J

of the simulation with, say, f(t) = 1. If several independently modu-
lated components are present in Eq. (12), the time step would be re-
scaled differently for every component

exp[—iL(t)At] = exp [i <Z f,»(t)ﬁ-) At

— exp|—i(F1At + E,At" + FsAL" +...)]. (14)

If the time steps {At,At",At”,...} are independent and non-zero
within the ZTE zero testing interval, their subsequent time depen-
dence would not introduce any new coherence transfer path-
ways—it would only re-balance and possibly remove the contri-
butions from the existing ones. Any zero tracks identified within
such testing interval would therefore stay zero. This reasoning
can be summarized by a simple qualitative rule: if a representative
segment of the Liouvillian time dependence is used in the ZTE
procedure, ZTE is valid for the time-dependent case and only needs to
be performed once. This rule explains why piecewise-constant
Liouvillians were treated as a separate case above—individual time
segments of a piecewise-constant matrix function tend not to be
representative of each other.

5. Simulation results and conclusions

Fig. 5 demonstrates the performance of Zero Track Elimination
and Lanczos pruning. A fairly typical spectrum of a strongly cou-
pled 10-spin system (Fig. 5C) requires 1,048,576 states for the ex-
act Liouville-space simulation, 895 states after the SSR(4)
procedure [17] and a mere 280 states after ZTE or Lanczos pruning
had been applied. The bottom spectrum in Fig. 5C illustrates the
numerical instability exhibited by Lanczos pruning (even with
SVD orthogonalization) with large state spaces. Zero Track Elimina-
tion procedure avoids computing high powers of the Liouvillian
and is numerically stable.

Lanczos pruning, however, tends to perform better for small,
densely coupled spin systems and tighter state-space restriction.
For a fully coupled (every spin to every other spin) five-spin system
in very small state spaces (Fig. 5A and B), the Lanczos pruning
reproduces the spectral envelope appreciably better than ZTE. This
can be important in solid-state and EPR simulations, where powder
averages are much more sensitive to the spectral envelopes of indi-
vidual orientations than to the accuracy of the splittings inside

C

n=10° (exact)

=

SSR(4)

=

SSR(4)
+ZTE

!
I
L

=i

SSR(4)
+SVD
t=0.24 s

L L

U

=

N

Fig. 5. Zero Track Elimination (A) and Lanczos pruning (B) performance for a 90°-acquire experiment on a fully and strongly coupled (every spin to every other spin, with
scalar coupling amplitudes selected randomly within 0-20 Hz interval) system of five spins 1/2. The dimension of the reduced state space is given on the left of each column
and the CPU time (Opteron 265/ DDR400) spent in pruning is shown on the right. The simulations labeled ‘exact’ were performed in the complete state space. With larger spin
systems (a 90°-acquire experiment simulation on a system with 10 spins 1/2 is shown in panel C, see the source code in the Supplementary Information for the simulation
details and the spin system structure), both techniques can be applied on top of SSR (restriction to four-spin orders between directly connected spins [17] is used here),

resulting in accurate simulations with very small matrices.
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Table 1

State-space dimension and matrix density statistics for the exact, SSR(4) and SSR(4) + ZTE simulation of a 90°-acquire experiment in large coupled spin systems

Number of spins® State-space dimension

SSR(4) Liouvillian density, %¢ SSR(4) + ZTE Liouvillian density, %¢

Full SSR(4)° SSR(4) + ZTE

6 4096 1747 212 0.63 4.0
12 1.7 x 107 15913 577 0.068 14
18 6.9 x 10'° 37981 655 0.028 1.1
24 2.8 x 10 60985 795 0.017 1.0
54 3.2 x 10* 1.7 x 10° 3418 5.7 x 1073 0.18
102 2.6 x 10°! 3.6 x 10° 7874 2.8x1073 0.08
198 1.6 x 10'° 7.3 x 10° 14282 1.4x10°3 0.05

¢ See Eq. (15) for the coupling structure of the model spin systems.

b SSR(4): state-space restriction up to four-spin orders between directly connected spins [17].

¢ Percentage of non-zero elements in the matrix.
them. Because the orthogonalization step is computationally References

expensive, Lanczos pruning tends to become more expensive as
well, as the restricted space gets bigger. On a side note, and some-
what counterintuitively, even in this fully coupled spin system,
more than half of the spin states can still be ignored.

Simulation results for larger spin systems are given in Table 1.
At least for the simple pulse-acquire experiment, ZTE procedure
cuts the state-space dimensions by further two orders of magni-
tude and makes the operator matrices quite dense, suggesting that
the pruning is now complete. The coupling patterns in the test sys-
tems in Table 1 are representative of a typical pattern of J-cou-
plings found in proteins:

(15)

where solid lines correspond to a J-coupling randomly selected
from a 0-50 Hz interval and the dashed lines indicate a random J-
coupling within a 0-10 Hz interval. As Table 1 demonstrates, the
combined SSR(4) + ZTE (i.e. state-space restriction up to four-spin
orders between directly connected spins followed by zero track
elimination) procedure reduces the dimension of the matrices in-
volved in the simulation by many orders of magnitude, cutting it
from astronomical to manageable. It is also worth noting that, while
large spin systems with regular coupling patterns (e.g. linear chains
[14-16]) have been treated in the literature, the algorithms outlined
above and in Ref. [17] differ in that they can deal with arbitrary sca-
lar or tensor coupling patterns.

In summary, we believe that the combination of the state-space
restriction procedure [17] with Zero Track Elimination outlined
above and/or Lanczos pruning [13,20] constitutes a computation-
ally efficient and numerically stable Minimal Truncation Scheme
[13,20] for spin dynamics simulations. It appears that the real ma-
trix dimensions required for simulations are, in fact, tiny, and the
astronomically sized matrices generated by the traditional direct
product procedures are completely unnecessary.
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